1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
| import pickle import pandas as pd from keras import Sequential from keras.layers import Embedding, LSTM, Dropout, Dense from sklearn.model_selection import train_test_split import numpy as np from tensorflow.compat.v2 import keras from keras.models import load_model
import os os.environ["CUDA_VISIBLE_DEVICES"]="0"
vocab_dim = 100 maxlen = 70 batch_size = 32 n_epoch = 4
f = open("dictW.pkl",'rb') index_dict = pickle.load(f) word_vectors = pickle.load(f)
n_symbols = len(index_dict) + 1
embedding_weights = np.zeros((n_symbols,vocab_dim))
for w,index in index_dict.items(): embedding_weights[index, :] = word_vectors[w]
def text_to_index_array(p_new_dic=None,p_sen=None): new_sentences = [] for sen in p_sen: new_sen = [] for word in sen: try: new_sen.append(p_new_dic[word]) except: new_sen.append(0) new_sentences.append(new_sen) return np.array(new_sentences)
train_data = pd.read_csv('./train.csv', encoding='ISO-8859-1') train_label = train_data['Sentiment']
train_label_New = [] for label in train_label: labelArray = [0] * 5 if label == "Positive" : index = 0 elif label == "Negative": index = 1 elif label == "Neutral" : index = 2 elif label == "Extremely Positive" : index = 3 else: index = 4 labelArray[index] = 1 train_label_New.append(labelArray) train_label = train_label_New
train_data = np.load("./sentences.npy", allow_pickle=True)
X_train , X_dev , y_train, y_dev = train_test_split(train_data,train_label,test_size=0.1)
X_train_new = text_to_index_array(index_dict,X_train) X_dev_new = text_to_index_array(index_dict,X_dev)
X_train_new = keras.preprocessing.sequence.pad_sequences(X_train_new, maxlen=maxlen) X_dev_new = keras.preprocessing.sequence.pad_sequences(X_dev_new, maxlen=maxlen)
y_train_new = np.array(y_train) y_dev_new = np.array(y_dev)
print("测试集shape:",X_train_new.shape) print("开发集shape:",X_dev_new.shape)
def train_lstm(p_n_symbols, p_embedding_weights, p_X_train, p_y_train, p_X_test, p_y_test, X_test_l): print('创建模型...') model = Sequential() model.add(Embedding(output_dim=vocab_dim, input_dim=p_n_symbols, mask_zero=True, weights=[p_embedding_weights], input_length=maxlen ))
model.add(LSTM(units=100, activation='sigmoid', inner_activation='hard_sigmoid')) model.add(Dropout(0.5)) model.add(Dense(units=512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(units=5, activation='sigmoid')) model.summary()
print('编译模型...') model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print("训练...") train_history = model.fit(p_X_train, p_y_train, batch_size=batch_size, nb_epoch=n_epoch, validation_data=(p_X_test, p_y_test))
print("评估...") score, acc = model.evaluate(p_X_test, p_y_test, batch_size=batch_size) label = model.predict(p_X_test) print('Test score:', score) print('Test accuracy:', acc)
"""保存模型""" model.save('./model/emotion_model_LSTM2.h5') print("模型保存成功") def show_train_history(train_history,train, velidation): """ 可视化训练过程 对比 :param train_history: :param train: :param velidation: :return: """ plt.plot(train_history.history[train]) plt.plot(train_history.history[velidation]) plt.title("Train History") plt.xlabel('Epoch') plt.ylabel(train) plt.legend(['train', 'test'], loc='upper left') plt.show()
def get_max_index(listRe): maxProb = 0.0 maxProbIndex = 0 i = 0 for re in listRe: if re > maxProb: maxProb = re maxProbIndex = i i = i + 1 return maxProbIndex def prediction(test_data,raw_test_data):
keras.backend.clear_session() model = load_model('./model/emotion_model_LSTM2.h5',) label = model.predict(test_data) file = open('./submission.txt', 'w') i=0 for re in label: index = get_max_index(re) i = i + 1 if index == 0: file.write("Positive"+'\n') elif index == 1: file.write("Negative"+'\n') elif index == 2: file.write("Neutral"+'\n') elif index == 3: file.write("Extremely Positive"+'\n') else: file.write("Extremely Negative"+'\n')
train_lstm(n_symbols, embedding_weights, X_train_new, y_train_new, X_dev_new, y_dev_new, X_dev)
raw_test_data = np.load("./test_sentences1.npy", allow_pickle=True) test_data = text_to_index_array(index_dict,raw_test_data) test_data = keras.preprocessing.sequence.pad_sequences(test_data, maxlen=maxlen) prediction(test_data,raw_test_data)
|